

Il fosforo come materia prima critica:
PROSPETTIVE TECNOLOGICHE,
NORMATIVE E DI MERCATO

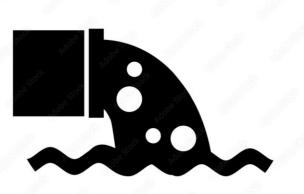
Phosphorous

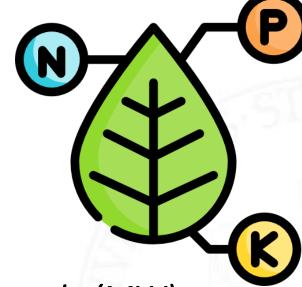
Politecnico di Milano

CAMPUS LEONARDO Aula Rogers

Piazza Leonardo Da Vinci, 32 20133 Milano

in collaborazione con:


Trattamento termochimico per il recupero del Fosforo (P)

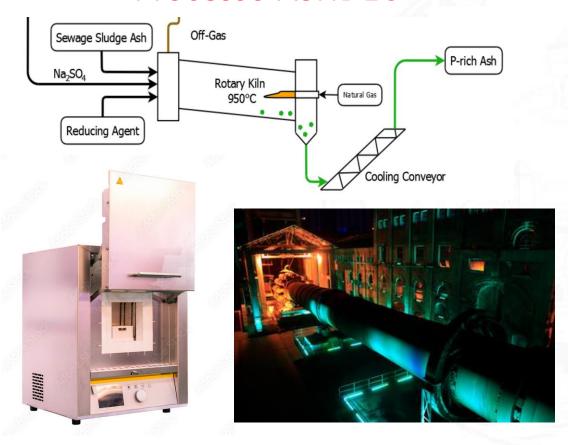

Mattia Massa mattia.massa@unibs.it

Sommario

- Stato dell'arte
- Riscaldamento convenzionale Vs riscaldamento a microonde (MW)
- *Trattamento innovativo a MW* → brevetto
- Primi risultati sperimentali -> analisi chimica e strutturale
- Sviluppi futuri

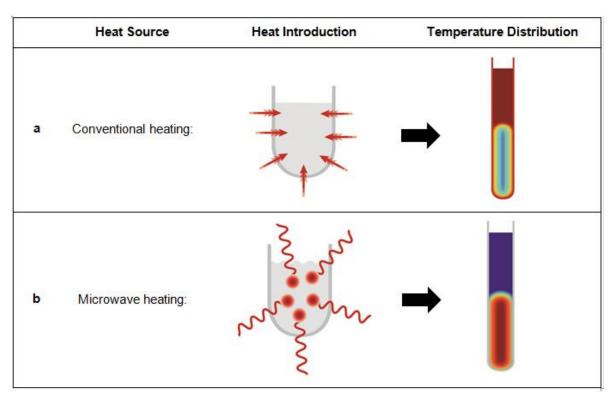
Stato dell'arte

Esperimenti di laboratorio


- Muffole
- Calcinazione di 30'

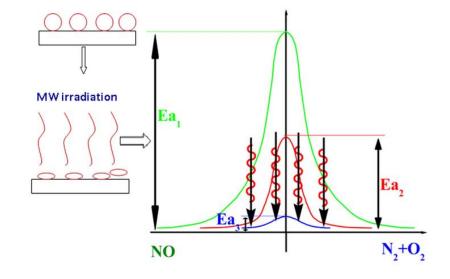
Esperimenti su impianto pilota

- Forni elettrici rotanti
- Tempo di ritenzione di 45'


Processo ASHDEC

Non includono i tempi di riscaldamento

Riscaldamento a microonde (MW)


Il riscaldamento a microonde è il risultato della conversione diretta dell'energia elettromagnetica in energia termica

Alta velocità di riscaldamento (70-120 °C/min)

✓ Tempi ridotti per il trattamento

Ea = energia di attivazione

Campioni di ceneri di fanghi di depurazione (SSA)

Monocombustione di fanghi di depurazione (SS) da acque reflue municipali:

• **G1:** ceneri volanti di ciclone (FA)

G2: ceneri volanti di caldaia (FA)

G3: ceneri volanti del filtro a maniche (FA)

• **G4:** ceneri pesanti (BA)

Preparazione del campione

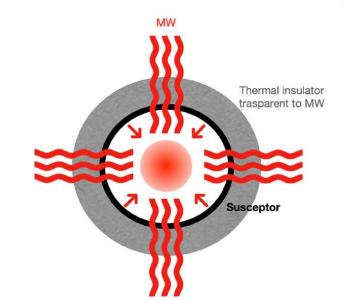
- Ricetta per il trattamento a MW:
 - SSA 60% (G1-G2-G3-G4)
 - Additivo salino 25% (NaHCO₃ 99.5%)
 - Agente riducente 15% antracite (88% di C)

es. 3g - 1.25g - 0.75g

- Macinato e omogenizzato in mortaio ad agata
- Pressato con pressa idraulica (P = 300 bar)
 per ottenere pastiglie (0.22 g)

Trattamento MW

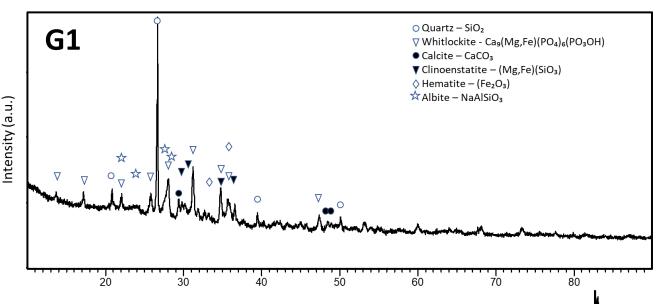
• Crogiolo e camera refrattaria → brevetto


Tempo: 15'

Potenza: 1000 W

Panasonic NN-GD36HM

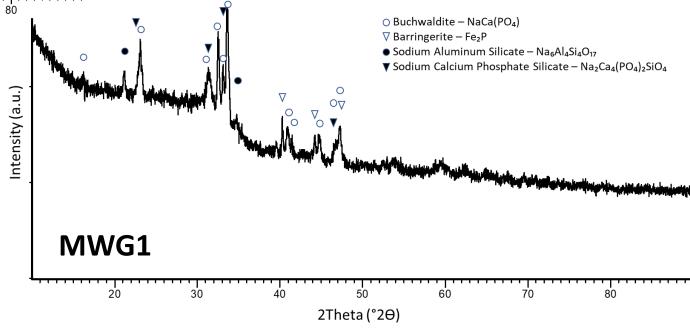
DOI: 10.1039/d2gc02328h

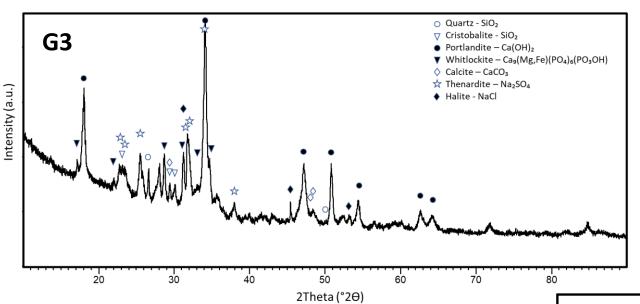


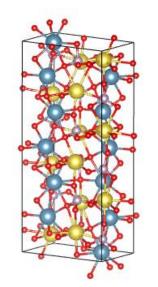
G1-G2 tal quali e trattati a MW composizione cristallina

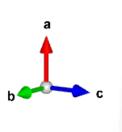
2Theta (°20)

 Formazione di buchwaldite, fase fosfatica solubile, dalla whitlockite, precursore insolubile (la reazione avviene a T > 950°C)

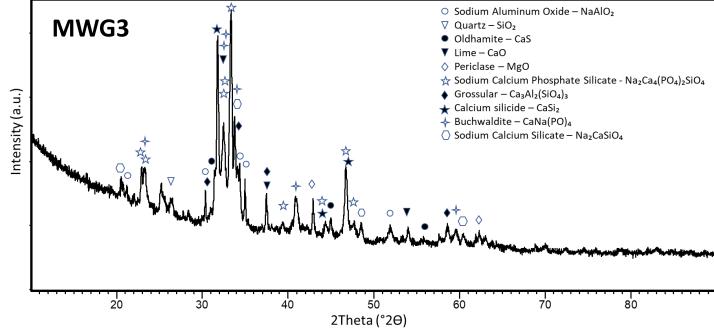

 $Ca_{3-x}(Mg,Fe)_x(PO_4)_2 + Na + E \rightarrow NaCa(PO_4)$

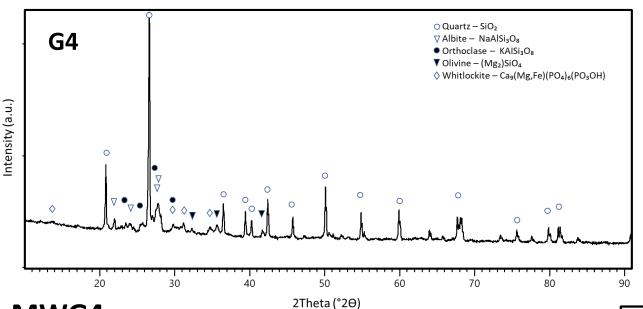

Aumento di P biodisponibile


 Pè legato anche in fasi cristalline poco o insolubili (barringerite - Fe₂P) (https://doi.org/10.1016/j.jhazmat.2019.121110)


G3 e MWG3 composizione cristallina

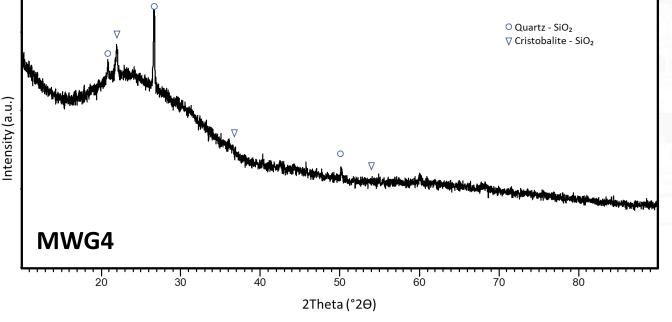
Buchwaldite (Bwa)


Gruppo cristallino: trimetrico Sistema cristallino: ortorombico


Formazione di:

- Fasi solubili in acqua
 - CaNa(PO₄)
 - NaAlO₂ → Na in eccesso
- Fasi non solubili in acqua

G4 e MWG4 composizione cristallina


G4

- Alta cristallinità
- Alto contenuto in quarzo
- Basso contenuto in whitlockite

MWG4

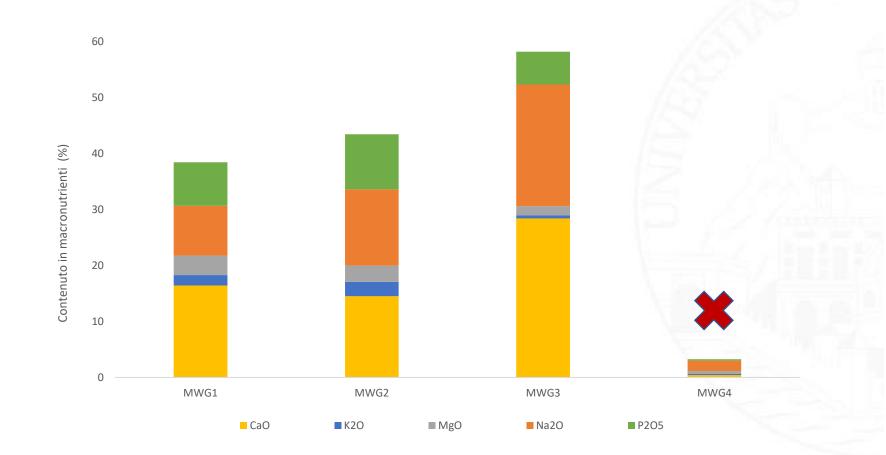
- Composizione prevalentemente amorfa \rightarrow pancia tra 15-35° (2 θ)
- Composti per la produzione di vetri:
 - SiO₂ e P₂O₅ forti formatori di vetri
 - CaO e MgO sono ottimi stabilizzanti
 - NaHCO₃ è agente fondente

Composizione chimica dei campioni tal quali e trattati a MW

Volatilizzazione di macro-elementi e metalli pesanti

- Diminuzione in Cd, Pb and Zn
- P K sono stabili eccetto per MWG4

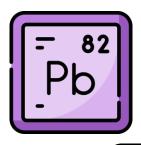
Element	mg/kg																							
Liement	G1			MWG1			G2			MWG2		G3			MWG3		G4			MWG4				
Cd	2,0 ± nd		< LOQ			2,4	±	nd	< LOQ			2,2	±	nd	<loq< th=""><th>1,4</th><th>±</th><th>nd</th><th colspan="2"><loq< th=""><th>Q</th></loq<></th></loq<>			1,4	±	nd	<loq< th=""><th>Q</th></loq<>		Q	
K*	10300	±	3100	15283	±	3575	14600	±	4400	21221	±	4963	5000	±	1500	4814	±	1126	14800	±	4500	1777	±	416
P*	28800	±	8600	33941	±	7908	51000	±	15000	42987	±	10016	25100	±	7500	25528	±	5948	42000	±	13000	1079	±	251
Pb	111	±	33	2,2	±	0,7	171	±	51	24	±	8	78	±	24	<loq< th=""><th>57</th><th>±</th><th>17</th><th>2,3</th><th>±</th><th>0,8</th></loq<>		57	±	17	2,3	±	0,8	
Zn	778	±	230	64	±	18	1240	±	370	569	±	156	754	±	230	18	±	5	505	±	150	19	±	5



Analizzati tramite ICP-OES (dopo digestione) e tramite XRF su campioni solidi (elementi segnati con *)

Fertilizzanti inorganici composti a base di macronutrienti

In accordo con **EU 1009/2019**, devono contenere più di un macronutriente sopra i seguenti limiti:


- P_2O_5 (3%)
- MgO (1,5%)
- CaO (1,5%)
- K₂O (3%)
- Na₂O (1%)
- N (3%)
- SO₃ (1,5%)

- La somma di tutti i macronutrienti deve essere almeno il 18% in massa
- Il contenuto in Na₂O non deve eccedere il 40% in massa

Contaminanti dopo trattamento a MW

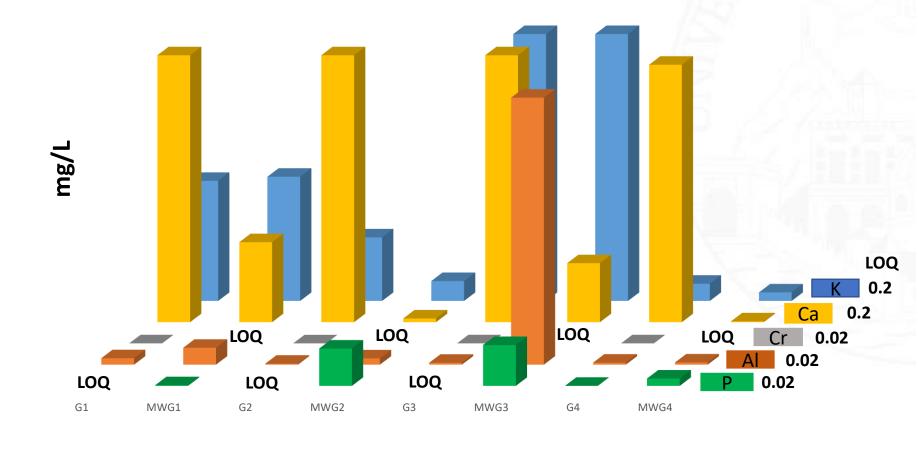
Element	Law Limits	MWG1	MWG2	MWG3	MWG4							
	[mg/kg]											
As	40	5.6	21.5	18.4	2.5							
Cd	3	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>							
Cr (tot)	2 (VI)	121	142	102	35							
Cu	600	1127	761	526	49							
Hg	1	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>							
Ni	100	106	142	73	52							
Pb	120	2.2	23.5	<loq< th=""><th>2.3</th></loq<>	2.3							
Zn	1500	64	569	18	19							

Composizione chimica dei lisciviati: campioni tal quali e trattati MW

Solubilità in acqua \rightarrow T ambiente - L/S = 10 – lisciviazione 2h - agitazione 300 rpm

Aumento

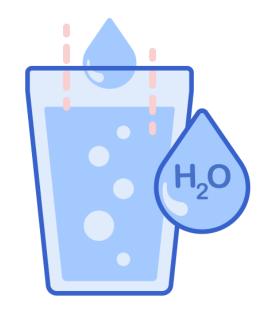
- P
- Al

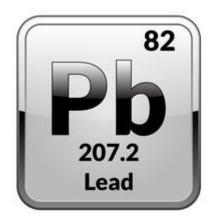

Diminuzione:

- Ca
- Mg
- Cr

Costante:

K e metalli pesanti




Conclusioni

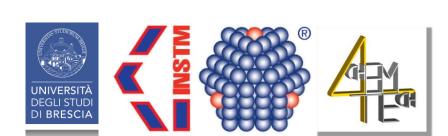
Trattamento a MW

- Aumento della solubilità di P
- Ottima rimozione per alcuni metalli:
 - Cd, Pb, Zn

 MWG3 → fertilizzante inorganico composto a base di macronutrienti

Sviluppi futuri

- Controllo dell'atmosfera
 - Gas inerte → condizioni riducenti garantite
- Controllo della temperatura
 - Lavorare in isoterma modulando la potenza
 - Estrapolazione delle curve termiche
- Additivi salini differenti (NaSO₄, MgCl)
- Agente riducente: SS disidratata



Grazie per l'attenzione

Mattia Massa mattia.massa@unibs.it

Reducing, Recycling, Reusing for the greater good of the planet

2nd Edition!

18th - 20th April, 2023 BERGAMO, ITALY

Phosphorous

info@piattaformaitalianafosforo.it

piatta formaitaliana fosforo.it

La Piattaforma Nazionale del Fosforo è una iniziativa promossa dal Ministero dell'Ambiente e della Sicurezza Energetica